

MATHEMATICS ADVANCED (INCORPORATING EXTENSION 1) YEAR 11 COURSE

Name:

Initial version by H. Lam, September 2014 (Graphs of exponential/logarithmic functions). Last updated September 20, 2023. Various corrections by students & members of the Department of Mathematics at North Sydney Boys and Normanhurst Boys High Schools.

Acknowledgements Pictograms in this document are a derivative of the work originally by Freepik at http://www.flaticon.com, used under © CC BY 2.0.

Symbols used

- (!) Beware! Heed warning.
- (A) Mathematics Advanced content.
- (x1) Mathematics Extension 1 content.
- (L) Literacy: note new word/phrase.
- \mathbb{N} the set of natural numbers
- \mathbb{Z} the set of integers
- \mathbb{Q} the set of rational numbers
- \mathbb{R} the set of real numbers
- $\forall \ \ {\rm for \ all}$

Syllabus outcomes addressed

MA11-6 manipulates and solves expressions using the logarithmic and index laws, and uses logarithms and exponential functions to solve practical problems

Syllabus subtopics

MA-E1 (1.1, 1.2, 1.4) Logarithms and Exponentials

Gentle reminder

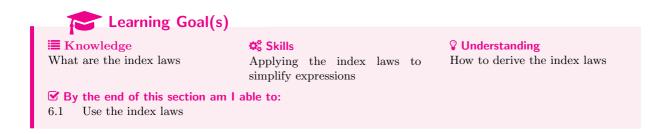
- For a thorough understanding of the topic, every question in this handout is to be completed!
- Additional questions from CambridgeMATHS Mathematics Extension 1 (Pender, Sadler, Ward, Dorofaeff, & Shea, 2019b) or CambridgeMATHS Mathematics Advanced (Pender, Sadler, Ward, Dorofaeff, & Shea, 2019a) will be completed at the discretion of your teacher.
- Remember to copy the question into your exercise book!

Contents

1	(\mathbf{R})	Review	v of	inde	x lav	ws																						4
	1.1	Opera	tions	resu	lting	in ə	dd	itio	n/s	ubt	ra	cti	on	/n	nu.	ltij	olio	cat	ior	1 0	f i	nd	ice	S				4
	1.2	Fractio			_				,					,		_												6
2	(\mathbf{R})	Logarit	thms	3																								7
	2.1	2.1 Basic rules													7													
	2.2	2.2 Laws of logarithms													7													
	2.3	Expon	_																									9
3	Equ	Equations involving indices and logarithms															10											
	3.1^{-}	Chang	ge of l	base						·																		10
		3.1.1	Exa	mple	es .																							10
	3.2	Harder	r equ	ation	ıs .																							12
		3.2.1	Exp	onen	tial																							12
		3.2.2	Log	arith	mic																							13
4	Exponential and logarithmic graphs															16												
	4.1^{-}	Expon	ientia	l																								16
		4.1.1	Tra	nsfor	matic	ons .																						17
		4.1.2	(x_1)	Hard	ler gr	aph	s .																					18
	4.2	Logari																										20
		4.2.1	Tra	nsfor	matic	ons .																						21
		4.2.2	X1	Hard	ler gr	aphs	s .																					22
5	Applications														24													
	5.1	Additi		ques	tions																							30
\mathbf{R}	efere	nces																										31

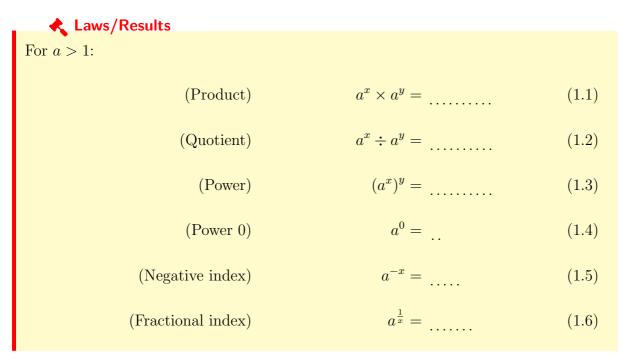
Section 1

(R) Review of index laws



1.1 Operations resulting in addition/subtraction/multiplication of indices

Only the most challenging questions are provided here. The rest are omitted for brevity and should be assumed knowledge.



Laws/Results (A slightly more neglected rule) $(ab)^{x} = \dots \tag{1.7}$

- (R) REVIEW OF INDEX LAWS OPERATIONS RESULTING IN ADDITION/SUBTRACTION/MULTIPLICATION OF INDICES 5
 - Important note

Use these laws in either "direction", i.e. from L to R or R to L

Example 1

 $[\mathbf{Ex}\ \mathbf{8A}\ \mathbf{Q15(e)}]$ Write as a single fraction, without negative indices and simplify:

$$x^{-2}y^{-2}(x^2y^{-1}-y^2x^{-1})$$

Important note

An everyday, plain English definition of simplify: write the expression with

Fully simplify: $\frac{2^{n+1}-2^n}{2^{2n+1}-2^{2n}}$

Answer: 2^{-n}

Example 3

[Ex 8A Q16(f)] Fully simplify:

$$\frac{24^{x+1} \times 8^{-1}}{6^{2x}}$$

Answer: $2^{x}3^{1-x}$

[Ex 8A Q18(c)] Fully simplify: $\frac{12^n - 18^n}{3^n - 2^n}$.

$$\frac{12^n - 18^n}{3^n - 2^n}.$$

Answer: -6^n

1.2 Fractional indices

Example 5

Fully simplify:
$$\sqrt[3]{\frac{x^{5k+1}y^{4k-5}}{x^{2(k-1)}y^{-2k+1}}}$$

Answer: $x^{k+1}y^{2(k-1)}$

Further exercises

Ex 8A

• Q5-19

Ex 8B

• Q5-19, 21

Section 2

Logarithms

Learning Goal(s)

What are the logarithmic laws

Skills

Applying the logarithm laws to simplify expressions

V Understanding

How to derive the logarithmic

☑ By the end of this section am I able to:

- Define logarithms as indices: $y = a^x$ is equivalent to $x = \log_a y$, and explain why this definition only makes sense when a > 0 and $a \neq 1$
- 6.3 Understand how to use a calculator to find logarithms base 10.
- 6.4Recognise and use the inverse relationship between logarithms and exponentials.
- 6.5 Derive the logarithmic laws from the index laws and use the algebraic properties of logarithms to simplify and evaluate logarithmic expressions. exponentials.

2.1 Basic rules

Definition 1

If $a^x = y$, then $x = \log_a y$.

Laws of logarithms

Laws/Results

(Product)
$$\log x + \log y = \log ()$$
 (2.1)

(Quotient)
$$\log x - \log y = \log \left(\right)$$
 (2.2)

(Power)
$$\log(x^a) = \tag{2.3}$$

(Power 1)
$$\log_a a = \dots \tag{2.4}$$

(Power 0)
$$\log_a 1 = \tag{2.5}$$

Use these laws in either "direction", i.e. from L to R or R to L

Example 6

Given $\log_a 2 = m$ and $\log_a 3 = n$, write the following in terms of m and n:

- (a) $\log_a 4$
- (c) $\log_a 1.5$
- (e) $\log_a 18$

- (b) $\log_a 27$
- (d) $\log_a 12$
- (f) $\log_a 13.5$

Example 7

[1995 2U HSC Q7] Given $\log_a b = 2.75$ and $\log_a c = 0.25$, find the value of

i
$$\log_a \left(\frac{b}{c}\right)$$

1

ii
$$\log_a (bc)^2$$

2

Example 8

Write each of the following as $\log_2 3$:

- (a) $\log_2 81$
- (b) $\log_2 2\sqrt{3}$
- (c) $\log_2 \frac{8}{9}$

2.3 Exponential analog & mutual inverse

(Mutual inverse)

$$a^{\log_a x} = \dots \qquad \log_a a^x = \dots \tag{2.6}$$

Example 9

Express 5 as a power of 2.

Example 10[Ex 8D Q15] Fully simplify: $2^{\log_2 3 + \log_2 5}$

Further exercises

Ex 8C (Pender et al., 2019b)

Ex 8D (Pender et al., 2019b)

• Q5-11

• Q5-16

Ex 12A (Pender, Sadler, Shea, & Ward, 1999)

• Q3-16, **E** Q17-18

Section 3

Equations involving indices and logarithms

Learning Goal(s)

What is the change of base law

Applying the logarithm laws to solve equations

V Understanding

How to make a pronumeral the subject in equations involving exponentials and logarithms

☑ By the end of this section am I able to:

- Consider different number bases and prove and use the change of base law $\log_a x = \frac{\log_b x}{\log_b a}$
- Can solve a range of equations involving indices and logarithms

Change of base

:= Steps

To change from base a for $\log_a x$ to base b:

- Let $y = \log_a x$.
- Rewrite as exponential:

3. Take logarithm to base b:

Use log-power law (2.3):

(F) Divide and rewrite:

Examples

Solve $2^x = 7$ correct to 4 significant figures.

Answer: 2.807

2

Example 12

[2010 NSB Ext 1 Prelim Yearly]

- i Rewrite $2^x = 5^y$ with $\frac{x}{y}$ as the subject by taking logarithms to a suitable
- ii Hence or otherwise, find the exact value of $8^{\frac{x}{y}}$ if $2^x = 5^y$.

Answer: (i) $\log_2 5$ (ii) 125

3.2 Harder equations

3.2.1 Exponential

Example 13 Solve for
$$x$$
:

$$3^{2x} - 12 \times 3^x + 27 = 0$$

Answer: 1, 2

Example 14

Solve for x:

$$4^x - 12 \times 2^x + 32 = 0$$

Answer: 2, 3

3.2.2 Logarithmic

Solve: $2 \log_3 x = \log_3 (6 - x)$.

Answer: 2

Solve: $\log 16 - \log x = \log(8 - x)$

Example 17

[2019 NBHS Ext 1 Task 2] Find the value of x if

 $\log_a 2 + 2\log_a x - \log_a 6 = \log_a 3$

Answer: 3

Solve the following pair of simultaneous equations:

$$\begin{cases} 5^{x+y} = \frac{1}{5} \\ 5^{3x+2y} = 1 \end{cases}$$

Answer:
$$x = 2, y = -3$$

Example 19

(Pender et al., 1999, Ex 12A)

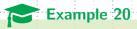
Use the change of base rule to show that

$$\log_{a^x} b = \frac{\log_a b}{x}$$

- (b) Hence evaluate $\log_{\sqrt{27}} 81$ without a calculator.
- Solve for x: (c)

$$\log_{\sqrt{a}}(x+2) - \log_{\sqrt{a}} 2 = \log_a x + \log_a 2$$

Answer: (b) $\frac{8}{3}$ (c) x = 2



[Ex 12A Q18] (Pender et al., 1999) (!) Solve for x: $\log_{2x} 216 = x$

Answer: 3

Important note

Hint: Rewrite in index form, then consider the prime factorisation of 216.

Further exercises

Ex 8B

• Q20

 $\mathbf{Ex} \ \mathbf{8E}$

• Q2, 4-15, **E** Q16

Section 4

Exponential and logarithmic graphs

4.1 Exponential

Learning Goal(s)

What are the important features of exponential and logarithmic graphs

Ø⁸ Skills

Sketch the graphs of exponentials and logarithms

♥ Understanding

The techniques used to determine the important features on exponential and logarithmic graphs

☑ By the end of this section am I able to:

6.10 Recognise and sketch the graphs of $y = ka^x$, $y = ka^{-x}$ where k is a constant, and $x = \log_a y$

6.11 Solve a range of problems related to exponential and logarithmic functions

Theorem 1

(M) Basic exponential curves:

• Equation:

• Condition on a:

• Domain:

• Range:

• When x = 0,

• When x = 1,

• As

• Inverse:

 $-\lim_{x\to\infty}\ldots=\ldots$

 $-\lim_{x\to-\infty}\ldots=\ldots$

Sketch:

• Always show two points on the curve!

4.1.1 Transformations

Example 21

Sketch:

1.
$$y = 3^x$$

3.
$$y = 10^{3}$$

5.
$$y = 2^{x-1}$$

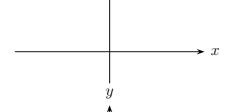
7.
$$y = 1 - 2^{-x}$$

2.
$$y = 3^{-x}$$

1.
$$y = 3^x$$
 3. $y = 10^x$ 5. $y = 2^{x-1}$ 7. $y = 1 - 2^{-x}$
2. $y = 3^{-x}$ 6. $y = 2^x - 1$

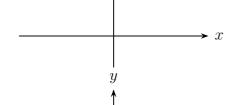
6.
$$y = 2^x - 1$$

1.



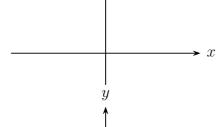
5.

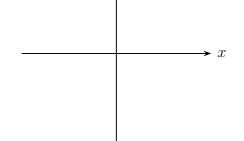
2.

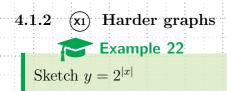


6.

3.







Sketch
$$y = 2^x + 2^{-x}$$

4.2 Logarithmic

Theorem 2

Basic logarithmic curves:

- Equation:
- When x = a,

• Condition on a:

• As

• Domain:

- $-x\to\infty, y\to \dots$
- Range:
- $-x \to 0^+, y \to \dots$

- When x = 1,
- Inverse:

Sketch:

• Always show two points on the curve!

4.2.1 Transformations

- Example 24

 1. $f(x) = \log_{10}(2x)$.

 2. $f(x) = \log_5 x^2$, x > 0.

 3. $f(x) = \log_6(3x 6)$.
- 4. $f(x) = \log_7(2x+3)$.
- 5. $f(x) = \log_{10} |x|$.
- **6.** $f(x) = \log_7(-x)$.



4.

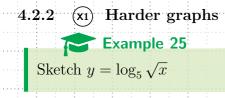
5.

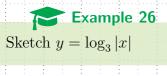
6.

1 Further exercises

Ex 8**F**

• Q2-8





Sketch $|y| = \log_{10}(-x)$

Sketch
$$y^2 = \log_{10}(-x)$$

Further exercises

Ex 8F

• Q9-11

Section 5

Applications

Learning Goal(s)

■ Knowledge

Solving real-life problems using exponentials and logarithms

Ø[®] Skills

Constructing equations involving exponentials and logarithms to solve from real life contexts

♀ Understanding

The real life applications of exponentials and logarithms

☑ By the end of this section am I able to:

- 6.6 Interpret and use logarithmic scales, for example decibels in acoustics, different seismic scales for earthquake magnitude, octaves in music or pH in chemistry
- 6.9 Solve algebraic, graphical and numerical problems involving logarithms in a variety of practical and abstract contexts, including applications from financial, scientific, medical and industrial contexts

Important note

Most questions in this section make use of the exponent e instead of 2, 3 or 10. Simply treat e as another one of these numerals for the time being - there will be a more in depth study of e later on with calculus.

Example 29

[2019 CSSA 2U Trial Q16] (2 marks) Find the domain of the function

$$g(x) = \ln\left(x^2 - x\right)$$

2

Example 30

[2000 2U HSC Q9] with slight modifications

- i. Sketch $y = \log_e x$ (Note: $e \approx 2.71828 \cdots$)
- ii. On the same sketch, find, graphically, the number of solutions of the equation

$$\log_e x - x = -2$$

26 APPLICATIONS

[1990 2U HSC Q7] A quantity Q of radium at time t in years is given by

$$Q = Q_0 e^{-kt}$$

where k is a constant and Q_0 is the initial amount of radium at time t = 0.

- Given that $Q = \frac{1}{2}Q_0$, when t = 1690 years, calculate the value of k
 - 1
- After how many years does only 20% of the initial amount of radium ii. 2 remain?

Example 32

[2020 CSSA Adv Trial Q18] A cup of coffee is cooling according to the following exponential formula

$$C = 21 + \left(74 \times 3^{-0.2t}\right)$$

where C is the temperature in degrees Celsius and t is the time in minutes since the coffee was poured.

- (a) Calculate the initial temperature of the coffee.
- (b) Calculate the temperature of the coffee after 10 minutes, correct to the 1 nearest degree.
- (c) After how many minutes, to the nearest minute, will the coffee first reach 50°C?

Answer: (a) 95° C (b) 29.2° C (c) $\approx 4 \text{ min } 16 \text{ seconds}$

1

27 APPLICATIONS

Example 33

A layer of plastic cuts out 15% of the light and lets through [1996 2U HSC Q3] the remaining 85%.

- Show that two layers of the plastic let through 72.25% of the light 1
- How many layers of the plastic are required to cut out at least 90% of 2 the light?

Example 34

[1985 2U HSC Q10] A population N(t) varies with time according to the law

$$N(t) = Ce^{kt}$$

where C, k are positive constants and $t \geq 0$

Show that, if a, b are two positive numbers such that a + b = 1, then 1

$$N(at + bu) = \left(N(t)\right)^a \left(N(u)\right)^b$$

for any $t \ge 0$, $u \ge 0$.

Hence or otherwise, find N(13), given that N(3) = 10 and N(18) = 1002 ii.

28 Applications -

[2011 2U HSC Q10] The intensity I, measured in watt/m², of a sound is given by

$$I = 10^{-12} \times e^{0.1L}$$

where L is the loudness of the sound in decibels.

- i If the loudness of a sound at a concert is 110 decibels, find the intensity of the sound. Give your answer in scientific notation.
- ii Ear damage occurs if the intensity of a sound is greater than $2 \ 8.1 \times 10^{-9} \, \text{watt/m}^2$.

What is the maximum loudness of a sound so that no ear damage occurs?

iii By how much will the loudness of a sound have increased if its intensity has doubled?

29 APPLICATIONS

Example 36

[1990 2U HSC Q8] It is assumed that the number N(t) of termites in a certain mound at time $t \ge 0$ is given by

$$N(t) = \frac{A}{2 + e^{-t}}$$

where $e \approx 2.7818 \cdots$, A is a constant and t is measured in months.

- At time t = 0, N(t) is estimated at 3×10^5 termites. What is the value 1 of A?
- What is the value of N(t) after one month? ii. 1
- How many termites would you expect to find in the mound when t is 1 very large?
- $(\widehat{\mathbf{x}})$ added and modified) By considering the graph of $y=2+e^{-t}$, iv. sketch the graph of N(t).

½ Further exercises

Ex 8G

• All questions

5.1 Additional questions

1. [1992 2U HSC Q4] Ten kilograms of sugar is placed in a container of water and begins to dissolve. After t hours the amount A kg of undissolved sugar is given by

$$A = 10e^{-kt}$$

(where $e \approx 2.7818 \cdots$)

i. Calculate k, given that A = 3.2 when t = 4.

- 1
- ii. After how many hours does 1 kg of sugar remain undissolved?
- 1

2. [2010 2U HSC Q4] (2 marks) Let $f(x) = 1 + e^x$

Show that
$$f(x) \times f(-x) = f(x) + f(-x)$$
.

Answers

1. i. $k = \frac{1}{4} \ln \frac{10}{3.2} \approx 0.28$ ii. $t \approx 8.08$ hrs

References

- Pender, W., Sadler, D., Shea, J., & Ward, D. (1999). Cambridge Mathematics 3 Unit Year 11 (1st ed.). Cambridge University Press.
- Pender, W., Sadler, D., Ward, D., Dorofaeff, B., & Shea, J. (2019a). CambridgeMATHS Stage 6
 Mathematics Advanced Year 11 (1st ed.). Cambridge Education.
- Pender, W., Sadler, D., Ward, D., Dorofaeff, B., & Shea, J. (2019b). CambridgeMATHS Stage 6
 Mathematics Extension 1 Year 11 (1st ed.). Cambridge Education.